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Abstract Using real-time numerical propagation techniques, we mnsider lhe lunnelling of 
elecuon wavepackeui through potential barriers lhat possess intemal dynamics The models 
considered allow the study of the influence of localized surface vibrational modes on the ”Iel 
current observed in scanning tunnelling microscopy. Non-resonant and reSOnant processes are 
cansidered. In the former me, we focus on the behaviour of the total tunnel c m n l  when the 
energy sweeps h u g h  an inelastic lhreshold. In lhe monant case. we maks contact with analytic 
theory and mnsider in detail, using a WO-channel Breil-Wigner model, the physics underlying 
the resonant prccess, the physical origin of sum-rules obeyed by the tunnelling characleristic, 
and lhe conditions under which simple analytic theoretical results can be applied in general. 

I. Introduction 

The study of tunnelling phenomena in solid state structures such as quantum wells [l] and 
scanning tunnelling microscopes (STM) [2] is currently active, both because of intrinsic 
scientific interest as well as possible short-term practical payoffs. One of the characteristics 
of the quantum well that gives rise to some of its intriguing tunnelling properties is the 
quasi-discrete nature of its eigenvalue spectrum. If the Fermi level of the tunnel structure 
playing the role of emitter or cathode is tuned to coincide with the energy of one of the 
quantum well’s quasi-bound states, the electron transmission function undergoes monant 
enhancement. Many years ago, this phenomenon of resonance tunnelling, as manifest in 
field emission energy distributions, provided the first experimental spectroscopic probe of 
the electronic structure of adsorbed atoms, based on a oneelectron process [3]. In that 
particular case, the ‘quantum well’ was in fact the potential well of the single adsorbed 
atom or molecule, similar to the present view of tunnelling in an STM [2,4,5]. More 
commonly, quantum wells are associated with so-called nanostructures which have been 
fabricated using molecular beam epitaxy. Although quantum well states have been observed 
in systems as thin as a monolayer 161, the characteristic dimension of the various layers in 
sandwich configurations is typically of the order of tens of angstroms. This influences only 
the energy scale, however, and the nature and properties of resonant tunnelling are basically 
the same in nanostructure and STM contexts. 

Inelastic processes in tunnelling are often discussed in terms of tunnelling times [7], 
particularly as embodied in a model due to Bilttiker and Landauer [8] withii which the 
inelasticity is due to an extemally imposed modulation of a barrier or well property [8-11]. 
More generally, recent study [9, IO] has focused on the situation where the inelasticity is 
due to optical phonons, intramolecular vibrational modes, or some other boson excitations 
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localized within the well [12-14], and has been formulated in terms of the useful model 
Hamiltonian [IS] 

where 

This describes a discrete electronic state localized in the quantum well (eigenvalue &, 
fermion operators ct ,  c) coupled via matrix elements V,.,,a to a number of electronic continua 

with a dispersionless boson field described by a harmonic oscillator Hamiltonian, with the 
oscillator linearly displaced when the electronic quantum well state is occupied. The tunnel 
junction shown in figure I is conveniently characterized by this Hamiltonian with the sums 
on a restricted to two terms, in which LY = [ ( r )  refers to the continuum of electron band 
states in the left (right) electrodes. With the electrodes biased by A@ as indicated in figure I, 
the total amount of energy left in the vibrational system is balanced by the energy loss of 
the electron which has tunneled, which in tum has an upper bound equal to AM. 

specified bya,  with eigenvalues 6gc andoperators c,,,, t cK,=. This electronic system interacts 

n 
~~ 

F 

Figure 1. Sketch of a lunnel junction linking leff and 
right metal elenmdes wilh Fermi levels e: and possessing 
a q u a "  well in the interstitial region. 

Although the model specified by ( I )  has been used in many different physical contexts 
over the past several years [15-17]. mathematical simplifications are required to achieve 
an exact analytical solution. In the limiting case in which A0 = 0, the occupation 
probability of the resonance after initial creation at time t = 0, decays exponentially as 
n,(t)  = (ct(t)c(t)) = e-r'/' and the local density of states associated with the quantum well 
is a Lorentziant. The width is expressed as r = E, r,, where r, = 2r I V,, ,  I* em(<.) 
with ea the density of states of the ath continuum at energy E.! and V,, ,  the constant 
hopping/tunnelling matrix element between the well and condnuum/conduction band state. 

When A0 # 0, the simple electron-phonon interaction in (1) amounts to a linearly 
displaced forced harmonic oscillator model [IS], within which the time dependence of 

T The exponenlial decay could occur even if A0 # 0, but the resulting local density of states would then be more 
c~mplicated lhan the simple Lorenfzian. This effect is always present when the decay is into a baunded continuum 



Wavepackets and inelastic tunnelling 5143 

the force is related to the time dependence of the resonance occupation. For the single- 
level well, this occupation is at any given instant either zero or one, although the time- 
averaged occupation is fractional. The coherent fluctuations in the occupation result in 
sudden switchings on and off of Hmt, which takes on values of either 0 or ho(b + b t ) ,  
but with no intermediate values as this would, in effect require some intemal degrees of 
freedom within the localized statet [20]. For a process involving a single sudden switch 
from the ground state of Hph to Hph+ Hint (or vice versa), the final oscillator state distribution 
is Poisson, with the probability of the nth state excitation given by Pa = exp(-,9)(pn/n!) 
where ,9 = (ho/ho&. For time evolution involving multiple switches, as in resonance 
tunnelling, the final distribution of excited states is more complicated but is still basically a 
variant of a product of Poisson distributions, one for each switch on or off of H d  augmented 
with interference effects$. 

The algebraic structure of the final result for a process govemed by the Hamiltonian in 
( 1 )  usually has the familiar form of a Poisson- or Gaussian-like expression, either convoluted 
with a Lorentzian or averaged over time with an exponential weighting factor [15-171. This 
has been discussed explicitly with respect to inelastic resonant tunnelling through quantum 
wells [13,17]. With the limitations implicit in (I), plus the consequences of the additional 
‘technical approximations’ needed to obtain neat analytic solutions, it is legitimate to wonder 
what inelastic resonant tunnelling really ‘looks’ like 1221, and whether the actualities of 
the process survived the modelling, simplifications and limiting case procedures that are 
necessary to set up explicitly soluble scattering state theories [13]. 

In order to address these issues, we have initiated quantum mechanical wavepacket 
simulations designed to model inelastic electron tunnelling through quantum well structures. 
The advantage of a wavepacket formulation is that aside from numerical errors arising from 
the time propagation, scattering and reaction probabilities are given exactly whatever the 
coupling strength and the complexity of the coupling. A considerable body of expertise with 
regard to wavepacket dynamics has been built up in recent years, notably in connection 
with chemical physics and nuclear, rather than electron, motion 123,241. Fast Fourier 
transform (Fm) techniques for time-evolving wavefunctions projected onto a grid allow real- 
time study of multi-dimensional quantum systems. In the present study, we have adapted 
procedures developed previously in connection with reactive scattering [24] and with charge- 
transfer behaviour during ion-surface collisions [25] to the inelastic resonant tunnelling of 
electrons. Jauho and Jonson have considered a related problem, but on the assumption that 
the exchange of energy between electron and the degree of freedom responsible for the 
inelasticity does not influence the motion of this degree of freedom, i.e. they considered the 
motion of a one-dimensional wavepacket subject to a time-modulated potential well [IO, 1 I]. 
This may be a valid approximation in non-resonant inelastic tunnelling, but is questionable 
in the resonant case. Although numerical limitations place some restrictions on the types 
of problems which can be treated sensibly via real-time wavepacket propagation (as will be 
discussed later), these are of a fundamentally different nature than the constraints required 
for the solution of (I). The methods are therefore complementary rather than competitive. 
We restrict ourselves here to simple model systems tailored to structures with Sm-lie 
dimensions [4], for which the wavepacket method is best suited. 

t Parenthetically we note that this aspect of the simple displaced oscillator model could be inadequate for describing 
many modem ultrafast laser experiments. where the decay of an initially prepared state i s  followed as a ’function’ 
of the ’preparation’ dynamics. See, for example, [19]. 
t As a special example, if H)mL is switched on and off at I = 0, TR. then the distribution is still Poisson, but with 
the parameter ~ ( T R )  = zg[l -cos(oarR)l. See PI]. 
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The remainder of the paper is organized as follows. The wavepacket method and 
technical details of the calculations are presented in section 2 along with visual material 
illustrating how the packets behave in the non-resonant and resonant cases. In section 3 we 
consider specifically non-resonant inelastic tunnelling, focusing in particular on the question 
of unitarity and its connection with threshold behaviour. Inelastic resonant tunnelling is 
treated in section 4. Here the focus is on the StructuTe in the tunnelling characteristic induced 
by the oscillator coupling. Results obtained with the wavepacket method are compared 
with the analytic formula derived by Wingreen and co-workers [I31 on the basis of the 
Hamiltonian in ( I ) .  Excellent agreement is found. Also, some simple sum-rules obeyed by 
the awdlytic formula are found to be obeyed approximately by the numerical results. The 
physics underlying this comparison, and the physical origin of the sum rules is discussed 
in detail with the aid of a two-channel Breit-Wigner model. Finally, in section 5 ,  we 
summarize and conclude. 

2. Model description and technical details 

The model used to study inelastic tunnelling is specified by the Hamiltonian 

comprising sequentially the electron kinetic energy, a stiff tunnelling barrier, a free oscillator 
Hamiltonian and an electron-oscillator coupling. The momentum and position operators of 
the oscillator, Po, Y, are chosen to be dimensionless so the free oscillator is completely 
specified by its vibrational energy tosc = fio; X is the position operator of the electron 
and the equivalent operator for the oscillator in the same units is y = ay, where 
(Y = [ f i * / ( h ’ f m ~ K ) ] ’ ’ ~ ,  with M o X c . ~  the mass and force constant of the oscillator. The 
stiff tunnelling barrier comprises two contributions: 

VdX) = V O W  + VledX) (3) 

where 

is a tunnel barrier between -X, < X < X, with wall thickness B-’ and heights when 
approached from -X, +X of Vo, Vo - VR, respectively, and 

v,,(x) = -V,exp(-yX2) (5) 

is a resonance contribution in the form of an inverted Gaussian centred at the origin, X = 0. 
The electron~scillator interaction is localized within the barrier and is assumed linear in 
the oscillator displacement. Specifically, the coupling is taken to be 

v,(x, Y) = -V,Yexp(-yx2) (6) 

where Vc measures the overall coupling strength. The tunnelling particle was taken to have 
the electron mass, m, = 1, and the barrier parameters VO = lOeV, p = 4au, y = 1 au were 
kept fixed in all cases. 
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For the non-resonant case, V, = 0, a relatively thin barrier (X, = 2au) was used 
so the tunnel probabilities are large enough to be calculated easily using a wavepacket 
method. This is  not a difficulty of principle, but it is much easier to ensure that numerical 
errors are eliminated if the tunnelling probabilities are not too small. The barrier was made 
asymmetric with VR = 4eV so that threshold behaviour in the final state could be studied 
easily. A sketch of the stiff barrier is shown in figure 2(a). Roughly, this may be regarded 
as modelling a weak-link metal-metal contact. The common 'Fermi level' (i.e. the lowest 
energy at which tunnelling into the right metal becomes possible) is at -6eV with respect to 
vacuum and the bandwidth of the metal on the left is 4 eV. The tunnelling process envisaged 
involves a 'hot electron' (excited, for example, by a sub-picosecond laser pulse) incident 
from the left metal and traversing the barrier, where it couples via short-range forces to a 
local vibrational mode (due to a ixapped molecule, for example). 

._ .._ Figure 2. (a) Static barrier for non-resonant tutmelling. (b) Static 
banier for resonant Nnnellig with a skelch of the probability 
density of the resonant state. Potential parameten as given in the 
text. The coupling to ule oscillator is localized within the barriers 
with a maximum at the banier cenbes. X 

In the resonant case a symmetric banier ( VR = 0) was used that was wider (X, = 4au) 
to accommodate the resonance region. The strength of the resonance potential was taken to 
be V,, = 14eV. The stiff potential V , ( X )  in (3) then displays an elastic scattering resonance 
at 4.92eV. A sketch of the potential and the stationary wavefunction at resonance is shown 
in figure 2(b). This can be regarded as simulating a similar situation to the above, but 
with the coupling to the inelastic degree of freedom enhanced dramatically because of the 
long 'delay time' of the electron within the barrier when the resonance condition is close 
to being fulfilled. The interplay is sufficiently strong so as to alter the resonance shucture 
of the barrier qualitatively. 

The tunnelling behaviour of these barriers was explored using wavepacket propagation. 
An incident free packet localized about X = -Xo and with m weight in the barrier region 
X ,., 0 was propagated using the split operator method of Feit and co-workers 1231, i.e. 
time translation of the wavepacket is performed according to 

exp(-ifiir) =exp Q 
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where ‘f and ? represent the total kinetic and potential parts of the Hamiltonian A of (2). 
The accuracy considerations for the optimal timestep and size of the mesh, along with other 
details as to how tunnelling probabilities were calculated, can be found elsewhere [24]. In 
the present case, all quantities were calculated to a numerical accuracy of the order of a few 
per cent. This requires, typically, propagation of - lo4 timesteps on meshes of 2 0 4 W 6  
and 16-32 points for the electron and oscillator coordinates, respectively. A large number 
of points is required for the electron because the mesh interval is determined by the barrier 
width while the extent of the mesh is governed by the required energy resolution, in this 
case - a few tenths of an electron volt Typically, a mesh spanning -400 i X < 1M)au 
was found to give reasonable results for most purposes. A high resolution is necessary not 
only in order to reproduce structure on the scale of the oscillator frequency, but also to 
ensure that the part of the wavepacket emerging to the right of the bamier actually went 
through it and not over it. Very roughly, an electron packet with mean energy E (eV) and 
confined within region dX (au) has energy resolution ds -+ 7&/dX eV. 

Figures 3(aHc) and 3 ( d H f )  i l l u s t r a~  some features of the manner in which the 
packets propagate for the non-resonant and resonant cases, respectively. Figure 3(a) shows 
the amplitude of a 6.25 eV packet some time after its front edge has struck the non-resonant 
barrier. The packet amplitude is plotted as a function of electron position, X. A small 
part of the packet, visible as a weak tail in the region X 7 0, has penetrated the barrier 
via tunnelling. The pronounced oscillations over the bulk of the packet for X < 0 are 
due to interference between incoming and reflected waves. Some time later, the packet 
has the form shown in figure 3(b). The transmitted and reflected packets have now all but 
separated and the main peak is moving in the -X direction towards the left mesh edge. The 
sharp edge in the transmitted packet towards the right mesh edge is due to the ‘absorbing 
wall’ boundary condition employed to absorb the packet [26]. The absence of ‘interference 
ripples’ on this part of the packet is an indication that the walls really are ‘black’. The 
tunnelling probability was evaluated by integrating the instantaneous current passing through 
X = +50au, halfway between the barrier and the absorption region. The behaviour of the 
current as a function of time is shown in figure 3(c). The plots show the currents, S,, 
associated with projections of the wavepacket onto the oscillator eigenstates. labelled by U. 
Since higher levels of excitation correspond to slower electrons in the final state, the peaks 
of the current distributions are displaced slightly in time by an amount roughly proportional 
to U. The displacements are very much smaller than the width of the plots, which depend 
on the real-space width of the initial packet. This is because the oscillator energy of 0.25 eV 
is small compared with the overall kinetic energy in the h a l  state. 2.25,2.0, 1.75 eV.. ., so 
the velocities are too close to allow a marked separation over the relatively short flight path 
to the point where the current is calculated. The distributions would separate in time if the 
packet were allowed to propagate far enough but, clearly, there is no point in doing this. 
Partial probabilities are very much more easily determined via projection of the wavepacket 
on the oscillator eigenfunctions and determination of the partial currents. These are local 
quantities and, provided the absorbing walls are sufficiently ‘black’, are unaffected if the 
part of the packet that has passed the reference point or plane where the current is calculated 
is absorbed. The time integrals of the current plots give the probabilities far the electron 
to tunnel leaving the oscillator in state v. The packet projections in figures 3(a) and (b) 
corresponded to times f = 300, 500, respectively, in the wings of the time-of-flight current 
plot (figure 3(c)). 

Similar plots in figures 3 ( d H f )  illustrate the build-up and decay of the resonance for 
the resonant barrier. Figure 3(d )  shows the packet amplitude at I = 300, when the resonance 
is building up and figure 3(e) when it is well in the process of decay ( t  = 500) .  For this 
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Figure 3. Wavepacket densities and currents for Ihe banien shown in figures Xu) and (b) and 
incident packet energies of 6.25 and 5,OeV for the non-monant (and and resonant ( d W )  
cases, respectively. (a) and ( d )  show wavepacket density distributions as the tunnelling begins 
(I = 300); (b) and (e) show the corresponding distributions as lhe tunneled and reflecied parts 
of the packet separate ( r  = 500). (c) and (f) shaw psrtial time-of-flight cunent dishibutiom 
through X = 50au. halfway between the N M e h g  barrier and the mesh edge, projected onto 
the final s W e  of the oscillator. The peaks of the partial distributions a x  displaced in time as lk 
final-state OsciUmr energy increases, but Ihe displacemenu are much smaller than Ihe packet 
widths. 

case, with an incident energy of 5.0eV. the reflected packet canied 80% of the weight 
(i.e. the total tunnelling probability was about 0.2). The corresponding partial currents a~ 
shown in figure 3(f)). The oscillator energy is now I.OeV so differences in final kinetic 
energy are larger than for the non-resonant case. However, the net delay of a given packet 
component is no longer determined by the time of flight alone because the time spent 'in 
the resonance' is not a single number but depends on the decay mode. This is the reason 
why the partial current plots in figure 3(f) show a somewhat more complex time behaviour 
than those in figure 3(c), for the non-resonant case. 

As mentioned above, an important advantage of the wavepacket method is its flexibility. 



This is exemplified by the fact that going from the non-resonant barrier to the resonant 
involves no change in the essential computational effort. In fact, of the two, the resonant 
case is the easier because the tunnelling probabilities of relevance are of order 10% or 
greater, whilst those for the non-resonant barrier were typically of order 1%. Clearly, the 
smaller the number to be calculated, the more care is required to eliminate possible sources 
of error (e.g. reflection from the mesh edge, timestep errors). Other factors that are of 
prime importance in achieving analyfic results, such as the complexity of the potentials and 
the couplings, are not material at all in the wavepacket method. Thus, whereas we have 
used a linear coupling to the oscillator, this is merely so that results can be compared to 
other calculations where a linear coupling had to be assumed in order to obtain a solution. 
No extra work is needed at all to deal with couplings of arbitrary strength and complexity. 

This advantage of the method is off-set by its main disadvantage, which is resolution. A 
major point of interest in the non-resonant case is behaviour at thresholds where a tunnelling 
electron can first excite a vibrational mode. To study threshold behaviour, a resolution is 
required that is sufficient to reveal singular behaviour as a new channel tums on. In 
the present case (and probably in general) it turned out to be impractical to nm packets 
having the required resolution. Accordingly, we studied threshold behaviour with the aid of 
coupled channels calculations using a method analogous to that of Gelfand and co-workers 
[27]. The scattering wavefunction was expanded in states, U, of the bare harmonic oscillator. 
Numerical solutions of the one-dimensional channel ScMdinger equation corresponding to 
a given v were then determined by numerical integration using ‘left’ and ‘right’ scattering 
boundary conditions. These were then used as ‘left’ and ‘right’ basis sets and the full 
wavefunction corresponding to a given set of incidence conditions was determined as a 
matching problem at the centre of the barrier. As usual in such cases, the convergence of 
the method was not easy to establish intemally because of oscillatory behaviour as U,, was 
increased. In the present case, an absolute check on convergence was available by running 
the code off-threshold and checking against the packet calculations. This was particularIy 
important for strong coupling, where it was found necessary to include over 400 channels 
in the calculation. 

3. Inelastic non-resonant tunnelling 

Figure 4(a) shows AT(€ .  VJ, the oscillator-induced change in tunnelling probabilities as 
a function of initial kinetic energy, E ,  obtained from wavepacket calculations using the 
non-resonant barrier depicted in figure 2(a) with an oscillator energy of 1.OeV. The term 
AT(<,  C’d is defined as the difference between the total tunnelling probability, Tit(<, Vc), 
with the inelastic coupling switched on and the tunnelling probability To(€) = &,t(c, V, = 0) 
of the bare barrier with the oscillator switched off, i.e. Tit(€, V,) = TO(<) + AT(€,  Vc). For 
the barrier shown in figure 2(a) and a moderate coupling strength, f i  is by far the largest 
contribution to the tunnelling having the value 0.057 at 6.25eV incident energy. Coupling 
to the oscillator contributed an additional tunnelling probability of about 25% of the total at 
all energies. We display AT rather than the total probability in figure 4(a) to highlight the 
slope discontinuities that occur at the thresholds. The opening of each new channel gives 
rise to a sudden increase in the slope of the total tunnelling current (the increase is visible 
only for the v = 1 threshold at 5eV). Also shown in figure 4(a) are the partial contributions 
to AT that correspond to tunnelling with the oscillator left in its uth excited state. The 
partial contributions are identically zero below the corresponding threshold incident kinetic 
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Figure 4. Tunneling characterislics of the non-resonant barrier in figure 2(n). (a) Oscillaiar- 
induced changes in tunnelling probability for barrier with leV oscillator, showing the 
discontinuous increases in the total (MI  curve) as new channels open. 'lbe broken, chain and 
dofted curves give the partial probabilities projected onia final osciliaiar slates with Y = 0, 1 . 2  
The threshold behaviour is given inmrrecUy because of the finite packet resolution. (b) 
Comparison of the tunnelling characteristic of the non-resonant barrier with the oscillator 
(eosc = .25eV) switched on and off. The full curve refers to the characteristic of the bare 
barrier. The broken curve shows how ihis increases when the oscillator is switched on. The 
chain curve gives the elastic component of the dynamical barrier (i.e. projected onto v = 0). This 
coniribution alone correspands to a substanlid enhancement of the stiff-barrier characteristic. 
(c)  Partial tunnelling probabilities with 0.25 eV oscillator illusuating the square-root singularities 
at the onset of transmined channels. 

energy,Vn + U C , ~ ~ .  and it is their onset that is responsible for the discontinuities in slope of 
AT(€) (and so the total tunnelling probability). 

The behaviour found in the wavepacket calculations and illustrated in figure 4(u) is 
typical of what is found in differential inelastic tunnelling spectroscopy [28]. The ons t  
of a new channel coincides with a discontinuous increuse in the net tunnelling probability. 
Clearly, each new channel adds its contribution to the total, but it is not obvious why the 
increase should not be compensated by a concomitant depletion of other channels. A naive 
(and incorrect) view of the interaction between the oscillator and the tunnelling electron 
regards this solely in terms of excitation or not of the oscillator as the particle traverses the 
barrier. This view can lead to confusion with respect to unitarity, which of course must 
hold for all channels, but does not hold for any subset of channels, such as the subset of all 
transmitted channels. If this were the case, then there would be no discontinuous changes in 
the total tunnelling probability at thresholds at all because the contribution of the emerging 
channel would be cancelled exactly by a depletion of other channels, as occurs for example 
in helium beam scattering from a surface when the beam energy sweeps through a selective 
adsorption threshold [29]. A correct view of inelastic tunnelling processes recognizes that 
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rigid barriers and barriers with internal dynamics are intrinsically different in their behaviour. 
No problems ensue if the scattering process is viewed as starting in the leads and not in the 
barrier itself, An electron approaches the junction and will either tunnel through or reflect 
back into the leads, in either case with or without excitation of the oscillator. Unitarity 
obtains with respect to all transmitted and reflected channels but does not obtain for either 
subset alone and, in fact, the onset of a new transmission channel may be associated with 
a net enhancement, no change, or a net depletion of the total tunnel probability. 

To illustrate in detail what actually happens at onset we show in figures 4(b) and (c) data 
obtained via coupled channels calculations, as outlined above. These data were calculated for 
the case tw = 0.25 eV, an oscillator energy more typically relevant for STM, and coupling 
parameter V, - 7.5eV. The number of open channels over the energy range spanning the 
barrier height, and the overall coupling to the oscillator is now significantly increased. 
Figure 4(h) compares the total and elastic tunnelling probabilities with the tunnelling 
probability in the absence of coupling. Switching on the oscillator now enhances the tunnel 
probability greatly, by more than a factor of two for incident energies Feater than 5.3 eV. As 
in figure 4(a) for the stiffer oscillator, this enhancement is not at all restricted to the inelastic 
channels but occurs also for the elastic channel. This is because the polarization of the 
oscillator acts as an effective attractive interaction assisting the electron’s passage through 
the barrier. The effect leads to a strong increase in the tunnelling c w n t  over its value for 
the stiff banier even when the incident electron energy is below the lowest threshold for 
inelastic tunnelling. The behaviour at channel onsets is not easy to see in figure 4(b) but 
is clear in figure 4(c). where partial tunnelling probabilities, elastic (U = 0) plus the four 
lowest inelastic U = 1 - 4  contributions, are shown separately. The behaviour at threshold is 
now seen to be a square root singularity in the partial probability that is going to zero, with 
no concomitant structure at all in the other partial transmission probabilities. The origin of 
the singularities is evident on writing down the unitarity requirement on the transmission 
and reflection coefficients, tV(6 ) . r , ( t )  that multiply the transmitted and reflected waves in 
the wavefunction. Defining the incident wavevector k, = & and channel wavevectors 
for reflection and transmission, k; = [%(E - c ~ ) ] ’ / ~ ,  k: [2m(E - E ,  - VR)]”, then the 
overall conservation of electron current requires that 

where the v sums run over all open channels; VR is the ‘bias’ voltage on the junction, i.e. the 
potential energy difference between rtw. As 6 sweeps through E ,  - VR, the vth transmitted 
channel emerges with a weight T, = (k;/ki)lrv(6)i2 that grows away from threshold l i e  
a square-root simply because of the factor k: multiplying the square of the transmission 
coefficient. This singular onset must be matched somewhere by a concomitant cusp to 
preserve the unitarily condition so either T,. or R9 (k>/ki)lr,,(E)l*, with U’ # U, or R, 
must display a downward cusp as the uth transmission channel opens. For the potential that 
generated the data in figure 4, the downward cusp is clearly not present in T,, and is in fact 
in the reflected channel R,. That is, the main singularities occur within the same subspace, 
U, and refer to matching singular onset and concomitant cusp in T, and R,, respectively, 
as illustrated in figure 5(a). Other channels do display irregularities at the threshold but 
these are of lesser importance. The reason why the total tunnelling probability increases 
as each channel opens in figure 4(b) is simply that the transmitted channel opens with a 
singular onset and the concomitant singular depletion occurs in a reflected channel. The 
total tunnelling then profits from practically all of the current flowing in the new channel. 
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E c 

Figure 5. ‘Qpical lhreshold behaviour for non-resonant tunnelling. (a) Asymmetric banier. Here 
the onset singularity of the vth transmitted channel is accompanied by a companion singular 
cusp in the uth reflected channel. (b)  Symmetric barrier. nte cth vansmiled and reflected 
channels onset at the same energy. The companion cusp then occurs in a Y‘ # Y channel or 
channels. depending on details. The case shown is particularly simple and the companion cusp 
occurs in a single channel. v = 0 reflection. 

We speculate that this behaviour will be observed generally provided the channels emerge 
one at a time with no coincidences or interferences. 

Gelfand and co-workers [27] considered the case of zero bias, VR = 0, where the singular 
behaviour is more complex because k ; ( ~ )  = k : ( ~ )  and the uth reflected and msmitted 
channels emerge at exactly the same energy. Since both channels then display singular 
onsets, the concomitant cusps required for unitarity must occur in some other subspace, 
v‘ # U. This is illustrated in figure 5(6), where the threshold behaviour observed using 
a symmetric potential is sketched. In the particular case shown the main channel that is 
depleted is the elastic reflection channel, Ra, and in fact the total tunnel current decreases as 
the energy sweeps through threshold. The precise behaviour, however, depends on details 
of potential and coupling. In general, as Gelfand and co-workers found, the concomitant 
cusp is shared by several other channels and the set of onset singularities may result in an 
increase or depletion of the total tunnelling probability. This situation we believe will result 
in general only when the coupling is extremely strong and/or when energetically coincident 
or strongly interfering thresholds for transmission and reflection occur. 

We have noted that the interaction of the electron with the oscillator cannot be thought 
of as independent from the tunnelling process as a whole. The forced-oscillator model 
implies a de-coupling of tunnelling and inelasticity, with the latter treated by assuming the 
particle traversing the tunnelling banier gives rise to a timedependent force on the oscillator 
that switches on and off, and so cannot be right in detail. It is nevertheless legitimate to 
ask whether the model reproduces the relafive probabilities, P,, with which tbe oscillator 
is left in excited state U. As noted in the introduction, within the forced-oscillator model 
the P,, form a Poisson distribution characterized by a single parameter which measures 
essentially the time average of the coupling strength. An analysis of the relative probabilities 
in figure 4(c) showed that these fall off significantly more slowly than Poisson. This is a 
typical consequence of a ‘slow’ interaction, where the dynamics of the ‘target’ (i.e. the 
oscillator) works back onto the trajectoly of the ‘projectile’ and the overall motion takes 
on some elements of adiabaticity. Since the parameters used to generate the tunnelling 
data in figure 4 are typical for applications in STM, this conclusion as to the validity of a 
semiclassical description probably holds in this context. 
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4. Inelastic resonant tunnelling 

The qualitative behaviour of the resonant tunnelling banier in figure 2(b) as given by the 
wavepacket calculations is illustrated in figures 6(0) and (b). Figure 6(0) shows the effect 
of increasing the coupling gradually. The curve marked 'Wave' is for the stiff-barrier 
alone and was determined using a wavematching method. This gives the true infinite- 
resolution tunnelling characteristic of the barrier, which becomes transparent at the peak of 
the resonance at an energy of errs = 4.92eV. Basically, the stiff-barrier characteristic is a 
single peak with full width at half-maximum - 0.3eV superposed on a low, weakly varying 
background. A wavepacket that would reproduce this behaviour quantitatively must have 
a resolution significantly less than the width, which would require an initial packet spread 
in X of many hundred au. This can be done, but requires undesirably long propagation 
times. We compromised by using an initial packet having an estimated energy resolution 
of approximately the resonance width. This gave the stiff-bartier characteristic marked 
'Packet'. The main consequences of the finite energy spread are a peaking of the tunnel 
probability at - 0.6 rather than unity and a somewhat broadened resonance stiucture. This 
was regarded as sufficiently similar to the correct result to allow a sensible study of inelastic 
effects. 

I "- 

c 

Figure 6. Tunneling through barrier With resonance state. (U) Total elastic transmission lhough 
rigid banier as determined by a wavematching method (full curve). The broken curve gives the 
equivalent using a packet with a resolution of approximately the nmnance width. The chain 
and domd curves give the effect of a weak and stmnger coupling Io oscillator (faax = I ev). (b) 
The full, broken. chain and doned curves give the total. elastic and first WO Inelastic channel 
transmission characteristics as function of incident particle energy and far the case of suonger 
wupling. 

When the oscillator coupling is switched on the broken curve goes over in sequence 
into the chain curve and the dotted curve as the coupling strengthens. In the non- 
resonant case, the coupling enhanced the tunnelling at all energies and inelastic effects 
were qualitatively (though not quantitatively) in accord with a semiclassical picture of the 
trajectorized electron-jisplaced-oscillator interaction. The same is not bue when resonances 
are present, however, because even a nominally weak coupling is enhanced hugely by the 
resonant time delay of the electron within the banier. The semiclassical picture discussed 
above for the non-resonant case then fails and the tunnelling behaviour cannot at all be 
deduced in terms of a perturbation on stiff-barrier behaviour. If the oscillator energy is 
larger than the natural width of the stiff-barrier resonance, the coupling splits this resonance 
into a family of resonances separated by roughly the oscillator energy, as in figure 6(a), 
for which E,,, = I.OeV. The lowest member of the family is shifted down in energy with 
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respect to sRS by an amount 6& = Ai/& that depends on the square of the coupling. The 
effect is analogous to the overall enhancement of the elastic tunnelling for a non-resonant 
barrier but now involves the temporary formation within the barrier of a ‘quasi-polaron’ 
(in fact, for sufficiently strong coupling the resonance would shift to negative energy and 
become a genuine polaron). The higher-lying resonances can also be thought of in terms 
of quasi-polarons that can be labelled according to the excitation spectrum of the bare 
oscillator. However, this does not mean that the decay of the vth quasi-polamn leaves the 
oscillator in its uth excited state. Figure 6(b) shows partial tunnelling probabilities, T,(E),  
giving the transmission characteristic when the oscillator is left in state U = 0, 1.2. The 
interpretation of these characteristics will be considered presently. 

It is interesting to compare the data in figure 6 with equivalent results obtained via the 
analytic method of Wingreen and co-workers 1131, who studied the more simplified but 
physically related model specified by ( I )  using a Green function method. They showed that 
the total transmission probability through a resonant barrier for an incident electron with 
energy 6 is given by 

where the partial transmission function for electron tunnelling accompanied by excitation 
of U vibrational quanta (U = 0 is the elastic channel) is 

with Bu,m,, (-l)j(y)$. As mentioned in section 1, the electron+scillator coupling 
strength is characterized by the ubiquitous parameter ,B = { , I O / E , , ~ } ~  which most obviously 
enters as an overall negative shift, SE,, = f l ~ ~ ~ ,  to the unperturbed spectrum. The total 
width of the tesonance in (IO), r, is given by the sum of the partial widths, r,,rr, 
characterizing the decay of the resonance into states of the left or right electrode. 

To make contact with the wavepacket calculations in figure 6, we have evaluated (9) 
and (IO) for a symmetric barrier, r, = r, = r/2, and with parameters = 4.92eV, 
core = 1 eV and constant energy-independent width r = 0.6eV. The evolution of the 
transmission function as the coupling increases is illustrated in figure 7(a) for the three cases 
,B = 0.0,0.5,1.0. The similarity to the wavepacket results in figure 6(a) is unmistakable. 
More striking still is a comparison of partial transmission functions. On using a value of 
,B = 0.3. chosen so that the coupling strength as exemplified by the shift of the resonance 
energy is the same as for the wavepacket calculations, (IO) gave the partial transmission 
functions shown in figure 7(b). Aside from the straightforward reduction in peak maximum 
due to the finite energy spread in the wavepackets, the partial spectra in figures 6(b) and 
7(b) are to all intents and purposes identical. Within the parameter range investigated here, 
therefore, the analytic result in (IO), obtained on the basis of the displaced oscillator model, 
provides a highly accurate picture of the inelastic tunnelling. Provided the non-resonant 
background is fairly flat, Tot(€) in (9) obeys the simple sum-des that the zeroth and first 
energy moments are independent of the electron-mdator coupling strength [13]. The same 
sum-rules are also found to be obeyed within the numerical accuracy by the transmission 
probabilities given by the wavepacket calculations. 

The physical content of these sum-rules and the overall behaviour of the tunnel 
characteristic becomes particularly clear within a two-level treatment of the resonant state, 
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Energy IeVI Energy IeVl 

Figure 7. Transmission functions according U) (9) and (IO). (U )  Total tunnelling pmbabilily. 
T,. for Wee values of coupling suength. (b) Partial aansmission characieristic, T,. for a 
coupling quivalent U) that in figure 6(b). 

where the oscillator is allowed to be in its ground state or first excited state but not in states 
of higher energy. Ordinarily, the spacing of electronic levels within the resonant well will 
be much larger than the oscillator energy. The resonant wavefunctions can then be assumed 
to involve essentially only a single electronic function and so will have the form 

(11) 
1 

*(X, Y) = - $rc-,,(x)[xo(n + bX1V)I m 
where +,$(X) is the resonant state in the absence of coupling (which can be defined 
precisely by switching off also the coupling to the left and right continua), and x0.1 are 
harmonic oscillator eigenfunctions. In the absence of electron-oscillator coupling $ d X )  
is the relevant quasi-bound-state, with energy E,,, and the tunnelling characteristic will be a 
single peak, which, making the usual assumption of a flat background and negligible level 
shift, will have the Breit-Wigner form 

where Ti is the width of the resonance due to decay by the incident channel. For the case 
of a stiff barrier with zero coupling to the oscillator we have ri = rl and since the potential 
is symmetric, r, = r, = r/2, so the barrier becomes perfectly transparent at the resonance 
maximum. 

If the oscillator is now coupled in via matrix elements 

v = ~ ~ ~ S I ~ X O l ~ d ~ ,  Y)lX1)l$m) (13) 

the single resonant state splits into a doublet whose components can be determined by 
diagonalizing the Hamiltonian in the 2 x 2 subspace of oscillator functions. The resonant 
energies, E*, and the wavefunction parameters b* that appear in (1 1) are 

(14) 

and refer to the new quasi-bound states of the full Hamiltonian. These give rise to two 
distinct resonant structures provided the resonance widths are significantly smaller than the 
spacing E+ - E -  - cost. As figure 6(a) shows, the sub-resonance structures are not carbon 
copies of the original V = 0 structure but have unequal peak heights that are substantially 
smaller than the V = 0 peak height. The reason for this may not at first sight be obvious. 

2 I f 2  z* = €& - Em = ;[Eosc * (& + 4v ) 1 b+ = g / v  
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Figure 8. Wavepacket calculation of the h’msmission 
function for a ’hot’ junction in which the oscillator 
is initially in the first excited state. This illustrates 
the effect of assisred lunne//ing where the oscillator 
deexcites during the tunnelling process. Total and 

3.0 3.5 4 0 4 . 5  5.0 5.5 6.0 partial transmission functions into first fow channels 
E are shown. 

If the matrix elements that determine the partial widths, rj, rr, have only a weak energy 
dependence across the spectrum of energies, then these widths are essentially independent 
of the value of V .  The resonance can decay into states of the left or right continuum 
leaving the oscillator either in its ground state, or singly excited. The coupling strength 
influences these partial probabilities but normalization within the oscillator subspace ensum 
that the overall decay probabilities, determined by the overlap of $m with left or right band 
functions, are unaffected. 

The same is not true of the incident width ri, however, because this corresponds to the 
oscillator being in its ground state. Thus, the resonance width due to decay via the incident 
channel includes an additional reduction factor expressing the weight of the oscillator ground 
state in the resonant state, namely 

Accohngly, the maximum values of the sub-peaks due to the individual sub-states of the 
resonant doublet are reduced from unity to R+, and the weights of the subsmctures are 
decreased correspondingly. As can easily be verified explicitly for the two-level example, 
the reduction factors and resonance energies obey 

R+ + R- = 1 R+E+ i- R-E- = (16) 

results that follow from the fact that the level wavefunctions for different V are related via a 
unitary transformation within the subspace of oscillator levels. Clearly, (16) can be trivially 
generalized to N levels and reveals the physical origin of the sum-rules derived by Wingreen 
and co-workers, and referred to above. These state that the zeroth and first energy moments 
of the tunnel characteristic are independent of the electron-oscillator coupling. The sum- 
rules assume the energy dependence of all relevant decay matrix elements is weak, but more 
importantly, that the resonant state is dominated by a single quasi-bound electronic level, 
as in (1 I ) .  If the electronic-vibronic coupling draws higher-lying electronic levels into the 
quasi-bound-states, the widths due to decay into the left and right electrodes wwld depend 
strongly on the coupling. Use of ( I )  rules this out explicitly, so the single-state assumption 
is implicit in the work of Wingreen and co-workers. There is no such stipulation in the 
model Hamiltonian (2) used in the wavepacket calculations, but the fact that the results 
agree with the analytic formula and the sum-rules are obeyed approximately is aposferioi-i 
evidence that the condition holds approximately nevertheless. This discussion shows that 
the model Hamiltonian in ( I )  gives an excellent description of inelastic resonance tunnelling 
provided the separation of the electronic levels is much larger than the vibrational quanta 
responsible for the inelasticity. 
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Finally, figure 8 shows the mult of a calculation where the oscillator is initially in its 
first excited state so that assisted tunnelling is possible, with the electron gaining energy 
and the oscillator reverting to its ground state. In non-resonant tunnelling this leads to an 
exponential increase of the total probability because the absorption of the initial oscillator 
energy propels the incident particle towards the top of the tunnelling barrier [30]. In resonant 
tunnelling, the effect is different. Gain processes give rise to a new resonance in the total 
tunnelling probability, TI(€), which now displays three resonances in the energy range 
considered. They are displaced downwards by about cost compared with the structures 
in figure 6 because the energy scale refers to the kinetic energy of the incident particle, 
which is smaller than the initial total energy by the oscillator energy, toS. Otherwise, the 
behaviour is similar. The partial probabilities, T’(6). refer to tunnelling with the oscillator 
in the final state v .  These follow the breakdown of oscillator eigenstates in the quasi-bound 
wavefunetions. For example, the highest-lying peak corresponds to a quasi-bound state 
whose wavefunction contains the largest admixture of ,yr. This is the reason it decays 
preferentially into the U = 1 channel. Likewise, the peak heights in the total tunnel 
probability increase in proportion to the overlap of the corresponding quasi-bound state 
with the U = 1 incident state, in qualitative accord with (12) (i.e. ri is largest for the quasi- 
bound-state having the largest U = 1 weight). In practice, gain processes will contribute a 
temperaturedependent broadening, either of the sub-structure in the tunnel characteristic, or 
of the entire stmcture if the individual lines are not resolved. Such effects can be estimated 
from calculations such as those in figures 6 and 8 by thermally weighting contributions with 
the oscillator initially in different quantum states. 

5. Summary and conclusions 

The problem of inelastic tunnelling, whether resonant or non-resonant, is of considerable 
interest both with respect to understanding the physics underlying the performance of 
devices such as scanning tunnelling microscopes and to development of a useful vibrational 
spectroscopy. The problem has been considered in many theoretical papers, most of which 
have employed a number of approximations and simplifications. The central aim of this 
paper has been to revisit and shed new light on some of the issues with the aid of numerically 
exact wavepacket calculations. Specifically, we have used wavepackets to model the 
tunnelling of a hot electron that has, for example, been photoexcited to a conduction band 
by an ultra-fast laser pulse, through a junction where dynamical coupling to a vibrational 
mode, modelled as a harmonic oscillator. occurs. Both non-resonant and resonant coupling 
has been considered. In the non-resonant case, the focus of the calculations was on 
threshold behaviour and the derivative discontinuities in the total tunnelling current that 
occur when the energy (gate voltage) sweeps through a vibrational onset. We found that 
the overall tunnelling current increases each time a new channel opens, as commonly found 
in experimental differential inelastic tunnelling spectroscopy. We showed that this was due 
to the manner in which the singular onset of a new channel is matched with concomitant 
cusp singularities that maintain unitarity. If the vth reflection channel is already open when 
the uth  transmission channel opens then this provides the concomitant cusp. Accordingly, 
the total tunnel current increases as the energy sweeps through threshold. We expect this to 
hold in general for not too large coupling unless the uth reflection and transmission channels 
open at the wave same energy (symmetric potential). In this case, treated by Gelfand and 
co-workers 1271, the concomitant cusp is taken up by channels with U’ # U. These could 
be predominantly reflection or transmission channels and the total tunnelling current may 
increase or decrease through threshold, depending on details. 
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In treating resonant scattering, our main concerns were to demonstrate how the 
wavepacket method can be applied to the resonant electron tunnelling’problem and to 
establish contact with analytic theory based on simplified models. We found that the inelastic 
coupling to the vibrational mode gives rise to a sub-structure in the tunnelling characteristic 
that, for the specific choice of potential and coupling used in the calculation, was reproduced 
almost perfectly by the analytic formula derived by Wingreen and co-workers [13] on the 
basis of the model Hamiltonian (I). The reason for this was discussed in detail in terms 
of a two-level Breit-Wigner model, which allowed a pleasing physical interpretation of the 
resonant inelastic tunnelling process and established a physical basis for the simple sum- 
rules obeyed by the analytic tunnelling formulae [13]. The analysis also makes clear that 
the analytic formula and the sum-rules will fail if the oscillator couples strongly to two or 
more electronic levels, or involves the continuum of electronic levels in an essential way. 
In the wavepacket calculations, no assumptions were made explicitly on this point, and the 
method is no harder to implement when an arbitrary number of levels rather than only a 
single level is involved. However, the good agreement with the analytic formula shows 
that for the potentials and coupling parameters chosen, basically only a single electronic 
resonant level contributed. 

Acknowledgments 

We gratefully acknowledge a grant of CPU time by the HLRZ, Forschungszentnun Jiilich 
and assistance from Mark Stiles at NET. 

References 

Kelly M 1 and Nicholas R J 1985 Rep. Prog. Phys. 48 1699 
Reed M A and Kirk W P (eds) 1989 NanosrmcIm Physics and Fabrimion (New York: Academic) 
Chamberlain J M, Eaves L and Ponal J C (eds) 1990 Elecrmnic Properries of Muhilayers a d  Low- 

Davies 1 H and Lang A R (eds) 1992 Physics of Nanosfrucrures (Bristol: IOPP) 
Burstein E, Lundqvist S and Tosatti E 1988 Phys. Scri. 38 233-320 
Behm R 1, Garcia N and Rohrer H (edsl 1990 Scannine Tunnelinp Microscom and Relored Melhodc 

Dimpn~ionol Semrconducror Srrucrwes (New York Plenum) 

- I .. . .  
(Dordrecht: Kluwer) 

Duke C B and Alferieff M E 1967 J .  Chem. Phw. 46 923 
Plummer E W, Gadzuk J W and Young R D 1569 Solid Stare C o m n .  7 487 
Gadzuk J W and Plummer E W 1973 Rev. Mod. Pkys. 45 487 
Penn D R. Gamer R and Cohen M H 1972 Phys. Rev. B 5 168 
Termff J and Hamann D R 1985 Phys. Rev. B 31 805 
Lang N D 1987 Phys. Rev. B 36 8173 
Lang N D, Yacoby A and lmry Y 1989 Phys. Rev. k r r ,  63 1499 
Gadzuk J W 1993 Phys. Rev. B (submitted) 
Penson B N I and Baraioff A 1987 Phys. Rev. Lell. 59 339 
Penson B N 1 1988 Phys. Scri. 38 282 
Himpsel F J 1991 Phys. Rev. B 44 5964 
Hauge E H and Stovneng 1 A 1989 Rev. Mod. Phys. 61 917 
Huang Z H. Cutler P H. Fwchtwang T E, Kms E. Nguyen H Q and Sullivan T E 1990 J.  Vac. Sci. Techml. 

Jonson M E 1990 Quantum Tronrpon in Semiconducrors ed. D Feny and C Iacobini (New York: Plenum) 
Biittiker M and Landauer R 1982 Phys. Rev. Leu. 49 1739 
Biittiker M I989 Nanoslrucrure Physics and Fabricarion ed. M A Reed and W P Kirk N e w  Yo& Academic) 
Landauer R 1991 Ber, Bunsenges. Phys. Chem. 95 404 
lauho A P and Jorwn M 1989 J.  Phys.: Condens. Malrer 1 9027 

A 8 186 (1990) 



5 158 

[ I l l  Jauho J P 1990 Phys, Rev. B 41 12327 
lohansson P 1990 Phys. Rev. B 41 9892 
Wingreen N S 1990 Appl. Phys. Len. B 56 253 

1121 G l m a n  L I and Shekter R I 1988 SolidSrore Commun. 66 65; 1988 Sov. Phys.-JETP 67 163 
1131 Wingreen N S. Jacobren J Wand Wilkin~ J W 1989 Phys. Rev. B 40 11834 
1141 Jonson M 1989 Phys. Rev. B 39 5924 

Lopez-Castillo J M, Tannous C and lay-Gerin 1 P 1990 Phys. Rev. A 41 2273 
[I51 Almbladh C 0 and Minnhagen P 1978 Phys. Rev. B 17 929 

Mahan G D 1981 Many-Panicle Physics (New Y Q I ~  Plenum) 
Cini M and D’Andrea A 1988 J .  Phys. C: Solid Srore Phys. 21 193 

1161 LangreIh D C. Mliller-Hanman E. Ramakrishnan T V and Toulouse G 1971 Phys. Rev. B 3 1102 
Mayan G D 1974 Solid S m M  Physics 29 ed. H Ehrenreich, D Tumbull and F Sei& (New York Academic) 

Ciuin P H. Wcnheim G K and SchlUter M 1979 Phys. Rev. B 20 3067 
Sunjit M 1980 Phys. Scri. 21 561 
yon BaRh U and Gmssmann G 1982 Phys.-Rev. B 2.5 5150 
Gumhalter B 1984 Pmn. S u ~  Sci. 15 1 
Gunnarsson 0 and Sch6nha”er K 1984 ManyBody Phenomena at Surfums ed. D Langreih and H SUM 

Cini M and DAndrea A 1984 Phys. Rev. B 29 6540 
Cederbaum L S and Domcke C 1977 Adv. Chem. Phys. 36 205 
Gadzuk J W 1979 Phys. Rev. B 20 515 
C i  M 1984 Phys. Rev. B 29 547 
Domcke W and Cederbaum L S I977 J.  Phys. B: At, Mol. Phys. 10 J-47; 1980 J .  Phys. B: AI. Mol. Phys. 

I171 Gadzuk J W 1991 Phys. Rev. B 44 13466 
[I81 Kemer E H 1958 Can. J .  Phys, 36 371 

Rapp D 1971 Q~~onrum Mechanics (New York HOIL Rhinehardf and Winston) pp 435-72 
[I91 Tannor D I and Rice S A 1988 Adv. Chem. Phys. 70 441 

Hmchfelder J 0 1989 Adv. C k m .  Phys. 73 1 
BNmer P and Shapim M 1992 Ann. Rev. Phys. Chem. 43 257 
Porter E D, Herck J L, Pedenen S. Liu Q and Zewail A H 1992 Nnrure 355 66 
Cavanagh R R. King D S. Stephenson J C and Heinz T F 1993 J.  Phys. Cif” 97 786 

1201 Coalson R D 1987 J. Chem. Phys. 86 995: 1989 Ads. Chem. Phys. 73 605 
1211 Gadzuk J W 1988 Ann. Rev. Phys, Chem 39 395 
I221 Brandt S and Dahmen H D 1985 The Picture Book of Quantum Mechanics (New York Wiley) 
(231 Feit M D, Fleck J A and Sreiger A 1982 J .  Comp. Phys. 47 412 

Korloff D and Kosloff R 1983 J. Comp. Phys. 52 35 
Korloff R 1988 1. Phys. Chem. 92 2087 
Mohan V and Salhyamurthy N 1988 Comp. Phys. Rep. 7 213 
Kulander K C (ed) 1991 Time-dependenr Methods for Qunnrwn Dynwnics (Comp. Phys. Comun.) 63 

I241 Bringer A and Harris J 1989 1. Chem. Phys. 91 7693 
1251 Bringer A and Harris J 1992 Surf. Sci. 274 403 
1261 Cerjan C and Kosloff R 1986 Phys. Rev. B 34 3832 
[271 Gelfand B Y, Schmidt-Rink S and Levi A F J 1989 Phys. Rw. Lerr. 62 1683 
I281 Wolfram T (ed) 1978 Inelastic Elecrron Tunneling Specrroscopy (Berlin: Springer) 

Hansma P K (ed) 1982 Tunneling Specrmscopy: Cupabiliries, Applimfionr and New Technologies (New 

1291 Celli V 1984 Many-Brxly Phenomena ar Surfaces ed. D langeth and H Suhl (New York: Academic) p 315 
1301 Hanis 1. Simon I. Lung A C, Mullins C B and Renner C T 1991 Phys. Rev. Len. 67 652 

A Bringer et a1 

P 75 

(New Yo*. Academic) p 221 

13 2829 

York Plenum) 


